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Abstract The chapter introduces AgE framework as a core for constructing agent-
based simulation systems. Its features are described against other solutions that may
be used in the area of agent-based simulation. The discussion focuses on technical
issues—the support for agent-specific services as well as the mechanisms allow-
ing for extensibility and flexibility of the configuration of simulation models and
systems. The considerations are illustrated by a simple case study, which aims at
showing the differences between AgE and several selected tools for agent-based
simulation.

1 Introduction

For certain problems appropriate models may be built and desired research may be
performed using available means—without specialized infrastructure (features of
uniform motion may be explored using a battery-propelled toy car and a stopwatch,
a toy car let down the slope may help in understanding motion with constant ac-
celeration, etc.). However, the research on complex systems (e.g. factory assembly
line) and phenomena (e.g. metal casting) often requires great effort that must be put
on examining their determinants, defining conditions for experimental runs, and the
observed features analysis. Therefore, appropriate strategies of performing exper-
iments must be defined, requiring placing of sensors and reading them, statistical
processing of the acquired data and computing their plausibility.

Unfortunately, paraphrasing Heisenberg’s uncertainty principle, by introducing
sensors into the system (e.g. reading the temperature during casting), the conditions
of experiments are changed, and readings of these sensors are affected by their pres-
ence. Also ‘live’ system analysis suffers from constrained possibilities of repeating
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the experiments with exactly the same conditions, which is required for statistical
processing of acquired data.

Obviously, there exists a possibility of constructing mathematical models, which
allow to formalize certain aspects of phenomena under interest, e.g. the process
dynamics based on differential equations or Markov chains [24]. Yet such models
are usually quite complex and have limited (though non-disputable) applicability in
pure theoretical analyses (cf. [8, 23]). Computer-based models and simulations sup-
port the researcher with powerful means to create a virtual environment and conduct
experiments with a possibility to repeat the simulations under different conditions,
generating vast amounts of data ready to be processed statistically for presentation
[28]. Thus, appropriately defined simulation may help in understanding systems or
phenomena of interest, prior to performing real-life experiments.

As digitial computers are discrete-time machines per se, discrete-time simula-
tion becomes a natural way of defining such models and implementing different
supporting tools [3]. Since it was possible to generalize typical elements of such
models (e.g. objects, events, actions), dedicated software tools became available,
most of them proprietary, but several open-source too [22, 19]. At the same time the
idea of agency (e.g. [29]) seems well suited for implementation of heterogeneous
complex systems simulations, as the globally controlled algorithm is replaced with
local perception and interactions among the agent, its neigbours in the environment
and the environment itself. The resulting combination of the discrete and agent-
based approach constitutes a base for a wide range of simulation systems (see, e.g.,
[20, 18, 16]).

In the course of this contribution, an agent-oriented framework AgE is presented
as a tool supporting the construction of distributed simulation systems. The chapter
begins with a short review of available discrete-event simulation frameworks. In the
next section, the structure and principles of work of AgE are presented. The discus-
sion of different features of AgE framework shows that it might be interesting and
competitive when compared to other available open-source software. In the end, a
case study depicting the application of selected frameworks to simulation of simple
inter-agent interaction is presented.

2 Agent-based simulation frameworks

Among a variety of problems (sociological, biological, etc.) requiring simulation
approach there are complex processes observed in populations consisting of a huge
number of different, possibly autonomous individuals. For such problems macro-
scale models may be defined, which allow for understanding the dynamics of the
emerged phenomena using appropriate mathematical apparatus, in order to perceive
its certain features. Alternatively, mimicking the behaviour of single interacting en-
tities, and observing the emerged phenomena in the whole population may be con-
sidered. Such entities, when situated in some environment, capable of perceiving
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the environment, interacting with themselves and the environment fall under the
definition of autonomous agents [29].

Agency brings many improvements into the world of simulation, following the
idea of decentralisation of control. Each agent may be autonomous, differently con-
figured, utilising different means of discovering the features of the environment and
its neighbours, utilising different algorithms and performing different actions in the
system. Because of these, interesting added value may be taken for granted: build-
ing complex systems consisting of different, interacting beings will be natural when
referring to agents as simulation objects.

As an example, one may consider economic modelling, which can, take into
account new and, arguably, more precise characterisations of human beings. This
way of modelling economic agents may become an alternative to more traditional
mathematical models employed in economics. Those traditional descriptions of hu-
man beings normally exclude, for the sake of tractability, fundamental aspects such
as qualitative descriptions of the agents’ goals and intentions, beliefs and other at-
tributes of human reasoning (e.g., bounded rationality) [26].

To recapitulate: the use of agents opens up new possibilities to introduce models
very close to their real equivalents. At the same time the approach of agent-based
simulation, because of its inherent logical decomposition and decentralisation of
control, allows for building models featuring high flexibility and extensibility. Ob-
viously all these features must be supported by dedicated software tools.

2.1 Technical issues

In agent-based simulation the problem of synchronisation of autonomous entities,
usually acting in parallel becomes of vast importance. Classical issues known from
the parallel programming [1], such as deadlocks or starvation must be avoided, that
becomes a non-trivial task when considering simulations consisting of hundreds or
even milions of agents. Technical problems would arise if the agents were imple-
mented as independent threads, especially in large systems, involving distributed
processing. Far better seems to inverse the problem of synchronisation, by follow-
ing so called phase simulation approach [21] in which there exists a synchronisa-
tion mechanism shared by a group of agents, which takes care of letting each regular
agent (taking part in the simulation) do some activities (e.g., perform some query on
the system state, change its state, register some action to be later performed by the
synchronisation mechanism. In this way, complex parallel programming is changed
into a kind of ‘round robin’ technique that does not pose problems in perceiving
parts of the simulation as still autonomous (and acting in parallel, in, nomen omen,
simulated way). Because of that, agent-based discrete-time simulation frameworks
gained the attention of the authors.

Following the requirements of agency, other technical issues influencing the im-
plementation should be considered, to make possible construction (or adaptation) of
general-purpose agent-based simulation frameworks fulfilling the user’s needs:
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• life cycle control (means for definition of an agent being and managing its life
cycle in the system),

• communication facilities (means for inter-agent and agent-platform communi-
cation making possible interaction between agents and the system, and among
the agents, even if they are placed in remote locations, as different computation
nodes),

• organisation (possibility of introducing some structures into agent organisation,
e.g., groups or even trees of agents), making possible mimicking behaviour of
real societes or implementing various divide and conquer-like algorithms),

• distributed computing (for simulations which require running on computer clus-
ters so the total time of experiment is reduced),

• exetensibilty (low coupling on different levels of implementation, following e.g.,
reusable software components paradigm, that help in modularisation and gener-
alization of the framework application, making possible easy exchange of algo-
rithm, agent, environment parts so that the platform may be easily reconfigured
for different experiments, repeating simulations in different conditions, focusing
on configuration instead of programming),

One may also consider the platform code status—is the code open-source, up-to-
date, cross-platform, making possible to quickly learn provided API, using as a
support existing developer’s blogs or fora.

2.2 Existing solutions

There exists a plethora of multi-agent frameworks which may be used to support the
construction of simulation systems. Some of them are oriented to specific kinds of
simulation (see [19, 22]): e.g., simulating of movement of entities with 3D visuali-
sation (see e.g., breve [17]), networking (see e.g, ns2/ns3 [9]), possibility of visual
programming (see e.g. SeSam [27]). When looking for universal agent-based sim-
ulation frameworks (especially in open-source software domain), one should con-
sider such products as Galatea [12], RePast [20], Mason [18], SystemC [6], SimPy1.
Other ones are general-purpose agent-based programming frameworks (e.g. JADE
[4]) that may be of course adapted to any kind of simulation. MadKit [16] should
also be mentioned as a framework for simulating complex populations (following
Agent/Group/Role paradigm [13]). An interesting, though not popular framework is
Galatea [12] that makes possible utilising HLA [11] infrastructures for running the
simulation as federation.

The below-mentioned frameworks were selected as the most promising examples
of general-purpose agent-based simulation frameworks in the open-source market.

1 http://simpy.sourceforge.net/
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MASON

MASON is an agent-oriented simulation framework developed at George Mason
University. The name refers to the parent institution, as well as derives from the
acronym Multi-Agent Simulator Of Neighbourhoods (or Networks) [18]. Mason is
advertised as fast, portable, 100% Java based. Multi-layer architecture brings com-
plete independence of the simulation logic from visualisation tools which may be
altered anytime. The models are self-contained and may be included in other Java-
based programs. Various means for 2D and 3D visualisation, and different means
of output are available (PNG snapshots, Quicktime movies, charts and graphs, data
streams).

Simulation in MASON consists of a model class SimState that composes ran-
dom number generator and a Schedule. An object of Schedule class manages
many agents, implementing Steppable interface, therefore an agent may interact
with other ones and the environment by exposing predefined method that will be
called by the Schedule [18]. The SimState may also manage the spatial struc-
ture of the simulation with a concept of Fields allocating different objects, thus
constructing environment in which the agents may be situated.

Programming model of MASON follows basic principles of object-oriented de-
sign. An agent is instantiated as an object of a class, added to a scheduler and its
step method is called during the simulation. There are no predefined communi-
cation nor organisation mechanism, these may be realized using simple method
calls. There are neither ready-to-use distributed computing facilities nor component-
oriented solutions.

First released in 2003, the environment is still maintained as an open-source
project, distributed under Academic Free license (ver. 3.0). The current version
(16.0) was released in the end of 2011.

RePast

RePast—Recursive Porous Agent Simulation Toolkit—is widely used agent-based
modeling and simulation tool. Repast has multiple implementations in several lan-
guages and built-in adaptive features such as genetic algorithms and regression [20].
The framework utilizes fully concurrent discrete event scheduling, HPC version also
exists [10]. In Repast 3, there are many programming languages interfaces (e.g.,
Java, Logo dialect, .NET languages, Lisp dialect, Prolog, Python). Logging and
graphing tools are built-in. Dynamic access to the models in the runtime (introspec-
tion) is possible using graphical user interface. There are predefined libraries for
different methods of modelling and analysis available, e.g., neural networks, genetic
algorithms, social-network modelling, GIS support.

The implementation of a simulation system in RePast 3 is realized in a simi-
lar way as described for MASON. The class suitable for simulation should extend
SimpleModel class, and contain appropriate implementation of step() func-
tion that will be called by the scheduler. It is to note that proper construction of the
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class’ attributes allows to edit them using introspection mechanism supported by
RePast GUI. The simulation may be even interrupted, available parameters may be
changed and the simulation may be carried on.

Repast 3 consists of different implementation of the platform (Repast J—Java-
based, Repast.NET—MS .NET and Repast Py—Python). It has been renowned for
a long time, however, recently Repast 3 has been superseded by its next stage de-
velopment called Repast Simphony (Repast S) bringing newly developed GUI, with
some significant changes into the programming paradigm.

In Repast Simphony, graphical programming mode has been introduced, there-
fore a model may be constructed according to Rapid Application Development ap-
proach to software construction and the generated code may be easily integrated
with Java and Groovy components. The execution environment supports exporting
the simulation results to many popular external tools such as R, Weka or MAT-
LAB. Sophisticated 2D and 3D visualisation features make possible integration with
JUNG and GIS. The Repast Simphony inlcudes various libraries supporting genetic
algorithms, neural networks, regression, random number generation and other math-
ematical tools.

In Repast Simphony, there has also been a new organisation concept called ‘con-
text’ introduced. It generally consists of a group of unorganized agents (they may
be organized using so-called projections) and may create a hierarchical structure
(context can have many sub-contexts and so on). This idea affects the perception of
agents in such way, that an agent in the sub-context also exists in the parent context,
but the reverse is usually not true.

The latest (Simphony 2.0 beta) version of this open-source project, licensed ac-
cording to ‘new BSD’ license, has been released in the late 2010.

MadKit

MadKit is a modular and scalable multi-agent platform written in Java aimed at
modelling different agent organisations, groups and roles in artificial societies. Ex-
tensive GUI is available, as well as different programming languages for agents
definitions (e.g., Python, Scheme, Jess, BeanShell) [16].

MadKit is built based on so called Agent/Group/Role organisational model [13]
utilising plugin-based architecture. The architecture of MadKit is based on micro-
kernels which provide only the basic facilities: messaging to local agents, manage-
ment of groups and roles, launching and killing of agents. Other features (remote
messages, visualisation, monitoring and control of agents) are performed by agents.
Both thread based agents and scheduled agents for multi-agent based simulation
may be developed. Different execution contexts are available: JSP, Applet, Console
mode, GUI desktop, etc.

Threaded agents participating in simulation inherit from the Agent class and
need to define at least the live() method that specifies their behaviour. This
method represents the main loop of the thread. Non-threaded agents, inheriting from
the AbstractAgent class, may also be used but they require a scheduling agent
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that can control their life cycle (e.g., which methods should be called at what time).
Besides schedulers there is also one more kind of special agents, called watchers,
inheriting from the Watcher class. They can use a set of probes to inspect param-
eters of other agents or the whole communities. All agents share also common life
cycle calls: activate() run during agent initialisation and end() that is called
at the end of the life-cycle.

Simulation does not require any particular structure or model to run. However, as
mentioned earlier, it is possible to add an arbitrary scheduler or create complex agent
communities and relations. Agents can locate other agents that handle a specific role
(or many roles) or are members of a particular group. They can communicate with
each other using these roles or group membership (i.e. using broadcast messages)
and react to them.

MadKit provides an environment (in the desktop-like form) that allows for rapid
creation and manipulation of agents with tools like a code editor, an agent designer
or an agent observer that can, for example, log all exchanges of messages. There is
also some support for binding GUI elements (graphical representations) to agents.
User can replace parts of the environment and extend it with system agents that can
use hooks in the micro-kernel to receive notifications about system events (publish-
subscribe model).

The latest stable (4.2) version of this open-source project, licensed according to
GPL license, has been released in 2008. Currently, alpha releases of version 5 are
also available.

3 Agent-based simulation in AgE

AgE environment2 is being developed as an open-source project at the Intelligent
Information Systems Group of AGH-UST. AgE provides a platform for the devel-
opment and execution of distributed agent-based applications—mainly simulation
and computational systems.

Fig. 1 presents an overview of a system based on AgE platform. A user constructs
the system by providing an input configuration in XML format. The configuration
specifies the simulation structure and problem-dependent parameters. After the sys-
tem start-up, the environment (agents and required resources) are instantiated, con-
figured and distributed amongst available nodes where they start performing their
tasks. Additional services such as name, monitoring, communication and topology
service are also run on these nodes to manage and monitor the computation. The
output of the simulation is problem-dependent and may be visualized at run-time by
dedicated graphical tools and interpreted by the user.

2 http://age.iisg.agh.edu.pl
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User

Computation

configuration

System based on AgE platform

Node 3

Computing agents

Node 1

Computing agents

Node 2

Computing agents
Monitoring

console

Fig. 1 AgE system overview

3.1 Structure and execution of agents

A simulation is decomposed into agents, which represent individuals or parts of
or whole populations. Agents are structured into a tree with virtual root agent (as
shown in Fig. 2) according to the simulation decomposition. The top level agents
(called workplaces) along with all their children can be distributed amongst many
nodes.

Aggregate

Aggregate Agent Agent

Agent Agent...

...

Aggregate

Agent Agent...

Aggregate

Agent Agent...

Virtual root agent

Workplace
Workplace

Fig. 2 Agent tree structure

Agents can have named properties, which are features of an object, which can be
referenced during run-time by its name in order to access, modify or even monitor
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its value. Properties are defined by annotating fields or methods of agents classes
with dedicated Java annotations [7]. Each agent exists in an environment, defined
by the parent agent, which provides a context of agent’s processing. With the use of
the environment, agents can communicate with their neighbour agents via messages,
acquire specific information about them via queries, or even request them to perform
specific actions.

It is assumed that all agents at the same level of the structure are being exe-
cuted in parallel. The platform introduces two types of agents: thread-based and
simple. The former are realized as separate threads so that the parallel processing
is managed by Java Virtual Machine (similarly to JADE platform). Such agents can
communicate and interact with neighbours via asynchronous messages. However, a
large number of such agents would significantly decrease the performance of a sim-
ulation because of frequent context switching and raises synchronisation problems
as discussed in Section 2. Therefore, following the concept of phase simulation,
the notion of simple agents is introduced. The execution of simple agents is based
on steppable processing which is to simulate pseudo-parallel execution of agents’
tasks. Two phases are distinguished:

• Execution of tasks related to computation semantics in the step() method. In
case of an aggregate agent all it’s children perform their steps sequentially. While
doing so, they can register various events, which may indicate actions to perform
or communication messages, in the parent aggregate.

• Processing of events registered in an event queue. Since events may be registered
only in agents that possess children, this phase concerns only aggregate agents.

The described idea of agents processing ensures that during execution of compu-
tational tasks of agents co-existing at the same level in the structure (agents with the
same parent), the hierarchy remains unmodified, thus the tasks may be carried out in
any order. From these agents perspective, they are processed in parallel. All changes
to the agent structure are made by aggregates during processing of the events that
indicate actions such as addition of a new agent, migration of an agent, killing an
already existing agent, etc. They are visible for agents while performing the next
step.

3.2 Actions

The environment of simple agents determines the types of actions which may be
ordered by child agents. It also provides concrete implementations of these actions
and thereby supplies and influences agents’ execution. Thus actions realize the agent
principle of goal level communication [5], because agent only lets the environment
know what it expects to be done but it does not know how it will be done.

Simple agents request their parent aggregates to execute actions during an ex-
ecution of a step of processing. Then, all of actions are executed sequentially (in
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order of their registration) by the aggregate after all children agents finished their
operations.

Because some of the actions can significantly change the environment (for ex-
ample removal or migration of an agent) so that the other actions would become
invalid, the following phases have been introduced:

1. initialisation (init), when target addresses are verified,
2. execution (main), when the real action is executed,
3. finalisation (finish), for performing activities that could not be executed dur-

ing the main phase (e.g. removal of an agent when other agents could refer to
it).

All changes of agents structure that can influence execution of other registered ac-
tions are performed in the finalization phase. As a result, performing an action in
the execution phase is safe. In the initialization phase actions can perform some
preparetion activities that are required by other actions.

Two types of actions exist:

• Simple actions that can define only one task to be performed on only one agent.
• Complex actions — they are containers for other actions and can hold a tree-

like structure. Actions wrapped by them are executed in a well-defined order and
allows to create more complicated scenarios like an exchange of resources, when
the separate component actions are required for getting a resource from one agent
and for delivering it to another.

Most simple aggregate actions are defined as methods in a class of an aggregate
agent and the default aggregate implementation provides some actions out-of-the-
box:

• adding of a new agent,
• moving an agent to another aggregate,
• death of an agent,
• cloning of an agent.

Moreover, users can extend the platform with any actions they need. These actions
can be created as strategies bound to the aggregate using the configuration of the
platform. They allow to extend functionality of the platform in an easy way but have
a downside of not having the possibility to refer to private members of the aggregate.
Decision of how to execute such actions is made by the parent agent who resolves
proper action implementation according to Service Locator design pattern [2].

3.3 Life-cycle management

The lifecycle of an agent consists of the following phases:

1. Construction — when a constructor of agent class is called.
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2. Initialisation of the object dependencies and properties — when the init()
method is called; at this point the agent has all its dependencies injected by the
component framework based on dependency injection pattern mechanism. Also
its properties are initialized using the component framework or by agent itself.
For example at this stage, an agent generates an address

3. Initialisation of the environment — the moment when the parent of the agent calls
the setAgentEnvironment()method. At this point the agent can use mech-
anisms that requires the existence of the local environment i.e. actions, queries,
messaging.

4. Finalisation of the agent — the finish() method. The agent should finish its
operation at this point.

Threaded agents additionally provide the run() method, called by the Java Vir-
tual Machine after their dedicated thread was started. At this moment they can start
the main loop of their execution.

The full lifecycle of the simple agents is shown in Fig. 3. Simple agents need
to provide an implementation of the step. It is done in the step() method. This
operation is called in an arbitrary order by the parent aggregate on every agent it
contains. The actual execution from the point of view of the whole tree of agents is
performed in the postorder way: firstly the aggregate lets children to carry out their
tasks and only after they finished them it executes its own tasks.

Executing

InitializedConstructed

finish()

step()

setAgentEnvironment()

init()constructor call

Fig. 3 A life-cycle of the simple agent shown as a state diagram

During the execution of the step, the simple agent usually needs to perform fol-
lowing actions:

• receive and send messages,
• execute queries,
• execute a part of the computation,
• order actions for the parent.

After iterating over all children, the aggregate needs to process the event queue.
These events are usually actions requested by the children.
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3.4 Communication facilities

The platform allows for all agents to have a unique addresses, which allow for their
identification and supports inter-agent communication. The particular property of
being globally unique is guaranteed by a structure of the address. As shown in Fig. 4,
the agent address comprises of three components: an UUID3, a node address, and a
name. Two former parts identify an agent in the platform instance and the last one
is a replacement for an UUID provided for the user convenience (for usage in a user
interface or logs).

Fig. 4 Components of an agent address

An address is usually obtained by an agent during the initialisation of the compo-
nent dependencies (see page 10 for the explanation of the agent life-cycle). It is done
by requesting a new address object from the AgentAddressProvider instance
that is a local component of a node.

Communication via message passing

Agents located within a single aggregate can communicate with each other via sim-
ple messages.

Interfaces used in messages are shown in Fig. 5. A message defined by the
IMessage interface consists of a header and payload. The header, as defined by
the IHeader interface must specify a sender of the message (usually the agent that
created the message) and its receivers. The payload is simply a data of any (serial-
isable) type that is to be transported.

Receivers are defined using selectors. They offer a possibility to define receivers
with the unicast, broadcast, multicast or anycast semantics.

In the case of simple agents, sending and delivery of messages is performed by
an aggregate agent. The sender adds a message event to its parent queue. The parent
handles it by locating all receivers and calling a message handler on each of them.
These messages are placed on a queue and can be received by the agent during its
next step.

Thread-based agents use a similar queue of messages but are not restricted by the
execution semantics and can inspect it at any point of time.

3 Universally Unique Identifier
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+getHeader() : IHeader<A>
+getPayload() : T

<<Interface>>
IMessage

+getSenderAddress() : IAddress
+getReceiversSelector() : IAddressSelector<A>

<<Interface>>
IHeader

A : IAddress
A : IAddress
T : Serializable

Fig. 5 Overview of interfaces used in messaging

Query mechanism

Queries offer a possibility to gather, analyze and process data located both in local
and remote (from the point of view of the query executor) components.

The diagram in the Fig. 6 shows base classes and interfaces of the query mech-
anism along with their interconnections. The central point of this mechanism is the
IQuery interface. It provides only one method: execute(). A query, as defined
by this interface, is an action performed on a target object that leads to creation of
query results. Specific implementations define a relationship between the target and
results.

+execute(target : T) : R

<<Interface>>
IQuery

GenericQuery MultiElementQuery

<<Interface>>
IInitialSelector

<<Interface>>
IValueFilter

<<Interface>>
IValueSelector

<<Interface>>
IQueryFunction

T
R

Fig. 6 Overview of queries base classes and interfaces

On the top of this interface and definition, a simple, declarative, yet extensi-
ble query language is built. Queries are implemented as (GenericQuery and
MultiElementQuery classes in the diagram 6. It allows the user to perform
tasks like: computation of the average value of some chosen properties from the
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agents in the environment, select and inspect arbitrary objects in collections and
much more.

The following operations are defined:

• Preselection of values from the collection. It is only available if the query is
performed over an iterable type instance. Its task is to select some (e.g. first ten
or random) of objects without usage of the object-related information.

• Filtering by a value. This is an operation similar to WHERE clause in SQL.
• Selection of values. It can select specific fields from objects and it shows some

similarities to the SELECT operation from SQL. If this operation is not defined
then whole objects are selected.

• Functions working on an entire result set. They can remove, add or modify ele-
ments.

Operators are defined as implementation of specific interfaces (one for every op-
eration, as shown in Fig. 6). They are presented to the user as static methods (e.g.
lessThan(), pattern() etc.).

A query is built by specifying following properties:

• A type of the target object (the object passed as an argument to the execute
method).

• A type of results.
• In the case of collections — a type of elements in a collection.

Such an exhaustive specification is required because queries rely on these pieces
of information to control correctness of operators used by the user (with the usage
of Java generics). Moreover, queries in AgE are built without the knowledge of the
target object (it is in opposition to many similar mechanisms like LINQ4).

After that, an operation of the query is specified using aforementioned operations.
The execution of the query is carried out by calling the execute() method.

The following Java code shows a simple example of how a query can be created
and executed. In this case a collection of strings is queried.

CollectionQuery<String, String> q =
new CollectionQuery<String, String>(String.class);

q.from(first(10))
.matching(anyOf(

pattern("li.*"),
pattern("lorem[Ii]psum")));

Collection<String> results = q.execute(someList);

It can be noticed that queries definition uses the fluent interface pattern with specific
operations being composed from static methods.

This approach of declaring a query without the knowledge of the target is addi-
tionally useful because it allows to execute a single query many times (possibly with
caching the results or operations) or to delegate queries to be executed in another

4 http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
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location. The query delegation is actually often used within the platform during the
operation of querying an environment of a parent of an agent. This mechanism is
essential for performing the migration of agents.

The other side of the queries mechanism is the extensibility offered to the user on
many levels. It is possible to create completely specialized queries (by implement-
ing the IQuery interface), extending the described declarative mechanism or even
define in-line operators when creating a query. This elasticity of queries was very
important because of performance requirements resulting from some applications of
the platform. An approach was adopted, that the user is able to provide much faster
solutions for his specific problems.

In some cases it is also useful to let know a queried object about a query being
executed on it. For this reason the interface named IQueryAware was created. By
implementing it any object can communicate to the query that it wants to be notified
about some events related to the execution. Currently, two events are supported:
initialisation and finalisation of the query.

The last part of the queries mechanism is caching. The platform offers a possi-
bility to build a cache of query results. Its expiration time is based on the workplace
step counter. This cache works as a wrapper to the query (and as such is an imple-
mentation of the IQuery interface). During the execution it checks whether stored
results expired and possibly executes a real query replacing old results.

3.5 AgE component framework

The platform provides dedicated component framework, which is built on the top
of an IoC container. It utilizes PicoContainer framework5—a popular open-source
Java implementation of IoC container that can be easily extended and customized.

Both agents and strategies are provided to the platform as components. Their im-
plementation classes can define named dependencies to other components (i.e. other
agents, services or any other dependent classes) and simple properties that hold for
example problem-dependent values. The dependencies definition for a component
type, together with class’s public methods (treated as component’s operations) may
be perceived as requirements closely related to component contracts (as proposed
by Szyperski [25]).

The process of assembling a system is divided into two main phases. In the first
one, the input configuration is read from XML file with well-defined structure6 and
further transformed into object configuration model, structure of which is shown in
Fig. 7. A ComponentDefinition instance describes a single component and
contains data such as it’s name, type (which is the name of a class) and scope,
which is to determine if a new component will be created for each request (protoype
scope) or only once during the first request (singleton scope). The definition also

5 http://www.picocontainer.org
6 http://agh.iisg.agh.edu.pl/age-2.3.xsd
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+createInstance() : Object

ComponentDefinitionConfiguration

+getValue() : Object

PropertyInitializer

+getValue(IComponentIns...
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IValueProvider

ReferenceValueProvider

SimpleTypeValueProvider

1..*

0..*

0..*

as constructor arguments

0..*

innerDefinitions

Visual Paradigm for UML Standard Edition(AGH University of Science and Technology)

Fig. 7 Object configuration model

specifies the constructor arguments, which are implemented as IValueProvider
objects and used during constructor-based injection [14], as well as property initial-
izers, responsible for initialising component properties with reference or simple val-
ues. Moreover, the definition contains createInstance method which creates a
new instance of a described component with initialized dependencies (this process
is described below). Component definitions may form hierarchical structures (via
innerDefinitions). If a definition is a child of another one, it is said to "exist
in the context of the outer definition" and is visible only for it’s parent and other
parent’s children (siblings). Validation of the model, performed during processing
of the input configuration, allows for detecting errors such as unresolved dependen-
cies, non-existent components or incorrect property definitions.

In the next phase of system assembly process, a hierarchy of IoC contain-
ers is built according to a structure of component definitions. For each defini-
tion a dedicated adapter (CoreComponentAdapter) is created and registered
in a container as shown in Fig. 8. Moreover, the adapter implements the interface,
which defines methods for retrieving instances of components by name or type —
IComponentInstanceProvider.

When a request for a component instance is directed to the container, it lo-
cates appropriate component adapter (using given name or type) and delegates
the request further, to it. The adapter calls the associated component definition’s
createInstance method, which is responsible for creating a component in-
stance. While instantiating a component the component adapter retrieves instances
of dependent components from associated IoC container (or its parent), and the loop
whole process starts again. In the case of simple types, a value is kept directly in a
value provider object and is returned on a request. The whole process is repeated un-
til all dependencies are resolved and then the fully-initialized component instance is
returned to the client.
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+getComponent(String) : Object
+getComponent(Class) : Object
+addAdapter(CoreComponentAdapter) : void

PicoContainer

+getInstance(String) : Object
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Fig. 8 Dependency Injection in AgE platform

The presented mechanism gives a possibility to build various structures of agents
with their dependencies and initial properties values based on the input configura-
tion.

3.6 Node architecture

The simulation is executed in a distributed environment comprised of nodes con-
nected via communication services. Each node is a separated process being exe-
cuted on a physical machine. Nodes are responsible for setting-up and managing
an execution environment for agents performing a simulation, as well as assuring
communication and collaboration in distributed environment.

The main part of the node is a service bus that realize Service Locator design pat-
tern. The bus is realized by AgE component framework, which utilizes IoC container
to create and initialize an object that is a run-time instance of a service. Services
are being registered in the container by the node boot-strapper or other services,
based on component definitions, created using API or read from XML configura-
tion file. A reference to a service instance can be acquired by service name or type
via IComponentInstanceProvider interface.

The node distinguishes stateless and stateful services. The former offer function-
ality dependent only on parameters given in method call, therefore they does not
hold any state and are always thread-safe. They are created on demand (at the first
reference) and than their instances are cached in the container.
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On the other hand, an instance of stateful service can hold data that influences
its behavior. Such services implement IStatefulComponent interface, which
introduces init and finishmethods, called by the service bus while creating and
destroying a service instance. Instantiation and initialisation is performed during
node start-up. Stateful services can be also realized as threads, that are started in
init method and finished asynchronously while destroying the service.

Service Bus

Execution Environment

Core Service

Workplace WorkplaceWorkplace

Communication 

Service

Configuration 

Provider Service

Stop Condition 

Service

Monitoring 

Service

Fig. 9 Example node with services

Fig. 9 shows an example node with registered services. The figure distinguish the
main service (called core service), which constitutes an execution environment for
agents, that provides functionalities such as global addressing schema, communica-
tion via message passing, query mechanism, life-cycle management.

This service also plays role of a proxy between agents and other services. Var-
ious services provide functionalities related to infrastructure (e.g. communication
and configuration provider services), simulation (e.g. stop condition service) or ex-
ternal tools (e.g. monitoring service, which collects and stores simulation data for a
visualisation application).

In one distributed environment particular nodes can have different responsibil-
ities such as an end-user console, monitoring, management, and at last execution
nodes. The role of a node is specified by the configuration of services plugged into
its bus. Also, one can imagine a platform comprised only from a single node that
works without any communication services7.

7 Such configuration is often used for test purposes.
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3.7 Virtual execution environment

The platform introduces a virtual execution environment in distributed systems that
allows for performing operations involving top level agents (workplaces) located
on different nodes without their awareness of physical distribution. Such operations
are executed by the core service according to Proxy design pattern [15]. The service
uses the communication service to communicate with core services located on other
nodes. This constitutes a global name space of top level agents in the distributed
environment. In other words, the virtual execution environment can be perceived as
a realisation of virtual root agent.

The name space of agents can be narrowed by introducing agent neighbourhood
that defines visibility of top level agents. An agent can perform operations only on
agents from its neighbourhood. The neighbourhood is realized and managed by a
topology service (Fig. 10). This allows for creating virtual topologies among agents
on the top of the distributed environment. Various topology strategies such as ring,
grid, multi-dimensional grid can be applied in simulations.

Virtual Execution Environment

Service Bus

Execution Environment

Core Service

Communication 

Service

Topology 

Service

Service Bus

Execution Environment

Core Service

Communication 

Service

Topology 

Service

Workplace Workplace Workplace Workplace

Fig. 10 Virtual execution environment
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4 Implementation of sample case study in selected platforms

To compare most basic mechanisms provided by chosen platforms a scenario needs
to be defined, to be reviewed in every system. As ‘most basic’ we understand fol-
lowing elements (they were described in the section 2.1):

• life cycle of agents,
• organisation of agents,
• communication between agents (with possibly distributed data or interactions),
• level of coupling in the case of replacing an agent behaviour.

The (very simple) scenario that uses all of this elements can be described as
follows:

1. Create and initialize a simulation with two agents.
2. Start the simulation. The agents should locate each other and start exchanging

messages saying ‘hello’.
3. Stop the simulation.
4. Change the implementation (behaviour) of the second agent (however, it still

should send messages to the other agent).
5. Start the simulation again.

The diagrams 11 and 12 show interactions between these two agents before and
after replacing the second one implementation.

2: sayHello

1: sayHello

Second:SimpleAgentFirst:SimpleAgent

Fig. 11 First phase of the scenario.

2: sayHello

1: sayHello

Second:AnotherAgentFirst:SimpleAgent

Fig. 12 Second phase of the scenario.
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4.1 MASON

We have tested the scenario against the version 16 of the MASON.

Life cycle of agents

Simulation in MASON is created by inheriting from the SimState class. The
execution of the simulation is started by calling the doLoop() method.

Agents are created either by implementing one of child interfaces of the
Steppable interface, that requires a definition of the step()method. An instan-
tiated agent needs to be scheduled to execute. It is done by calling one of methods of
the Schedule instance located inside the simulation. For example, the following
code schedules an agent to run repeatedly every unit of time:

Steppable agent = ...;
schedule.scheduleRepeating(agent);

Organisation

Agents may create a social network within a simulation. A social network, in MA-
SON terms, is an undirected graph (or multi-graph) whose edges may be labeled
and weighted. It opens possibilities to create arbitrarily complex relations between
agents.

Moreover, MASON provides models for spatial organisation of agents. Using the
Continuous2D class a plane for agents to be placed in could be created. Then, we
could obtain agents to interact with on the base of their distance from the requesting
agent:

Bag neighbours =
space2d.getObjectsWithinDistance(myPosition,
distance);

Where myPosition is a position of the agent and a distance is a number of the
double type.

Communication

MASON does not provide any specific communication capabilities to agents. There
is no distribution support either. Thus the developer needs to implement its own
solution.

In the simplest case, communication can be realized with the usage of meth-
ods calls. It is a reasonable solution due to the fact, that the agent usually ob-
tains a reference to its potential communication partners in some way (e.g. the
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getObjectsWithinDistance returns a bag of real agent objects). For exam-
ple, saying ‘hello’ to all neighbours could be implemented as:

Bag neighbours =
space2d.getObjectsWithinDistance(myPosition,
distance);

for(int i = 0; i < neighbours.numObjs; i++)
{ if(neighbours.objs[i] != this) {

((Agent)neighbours.objs[i]).sayHello(this);}
}

A reference in the sayHello method can be used by the partner to respond to the
call.

Distribution could be also added to the system but it would require the user to
develop a complete solution (probably specific to the simulation) that would allow
more-or-less transparent communication between separate MASON instances.

Coupling

A change of a behaviour of an agent is costly. MASON does not provide any built-
in features to easily replace implementations of simulation objects (e.g. there is no
configuration mechanism that would allow to define a specific implementation for
a particular simulation run). Code (of an agent or the simulation initialisation) need
to be changed and recompiled in order to use a new behaviour.

On the other hand, MASON provides utilities to build a GUI. One can make
use of them to provide a way for the user to load new classes or change simula-
tion parameters. However, it still needs to be programmed by the developer of the
simulation.

4.2 RePast

We base this description on RePast Simphony 2.0 beta as this is a version currently
recommended to use by developers.

Life cycle of agents

An agent in RePast is created as POJO — there is no requirements directed towards
its implementation. To be able to run in the simulation it needs to have one of its
method annotated with a scheduling plan. It is possible to use, for example, an active
scheduling in the form of the ScheduledMethod annotation or the reactive one
— the Watch annotation.
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We would like to have an agent to execute in every step of the simulation since
its beginning:

class Agent {
...
@ScheduledMethod(start=1, interval=1)
public void performStep () {
...

}
}

The simulation is initialized and built by a ContextBuilder implementation
that should be provided by the developer. It’s implementation is dependent on the
specific use-case but RePast provides a default version that behaves like a collection
(i.e. java.util.Collection) of agents.

Organisation

Similarly to MASON, RePast allows for spatial organisation of agents on multidi-
mensional continuous spaces or grids (however, there is no simple way to obtain
neighbours of the object). Moreover, there is a graph organisation model that allows
to construct arbitrarily complex networks of agents. It can be created in the context
using:

NetworkBuilder<Object> builder = new
NetworkBuilder<Object>("agents", context, true);

builder.buildNetwork();

And then, the agent, can obtain associated agents using (the graph is directed):

Network<Object> net =
(Network<Object>)context.getProjection("agents");

for(Agent agent : net.getSuccessors(this)) {
...

}

Several other projections, like GIS8, are also available.

Communication

RePast does not offer any built-in messaging or interaction mechanisms beside plain
method calls. As in MASON, it is possible to build a specific communication pro-
tocol for the particular simulation.

8 Geographic information system
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On the other hand, RePast has a support for the computation distribution using
GridGain9 or Terracota10 plugins.

Coupling

RePast is similar to MASON also in this aspect. Agents depend on each other’s inter-
faces and a simulation is constructed in a compiled builder. However, there is a sup-
port for specifying model parameters in configuration files (parameters.xml).
Some components of a scenario may also be specified (and thus easily replaced) in
the configuration.

4.3 MadKit

We used the version 4.2.0 of the project as it seems to be recommended release
(although there are alpha releases of the version 5).

Life cycle of agents

Usually agents in MadKit are implemented by inheriting from the Agent class,
representing a threaded agent. The main behaviour of such an agent can be provided
by its creator in the live() method. Additionally, actions to be executed on agent
initialisation and finalization can be specified by implementing activate() and
end() methods.

In the discussed scenario a messaging in a do-while loop guarded by some con-
dition could be simply implemented:

public class SimpleAgent extends Agent {
...

public void live() {
do
{

exitImmediatlyOnKill();
...
pause(100);

} while(someCondition);
}

}

9 http://www.gridgain.com/
10 http://www.terracotta.org/
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The exitImmediatlyOnKill() call is a way for an agent to check that it
should stop its operation.

Furthermore, MadKit also allows to create agents with more general scheduling
semantics thanks to AbstractAgent and Scheduler classes. The former is
used as a base class for non-threaded agents and the latter is a scheduling agent that
can execute methods of other agents according to the user specification, with the
usage of so-called activators.

Organisation

MadKit offers a possibility for agents to organize into groups. An agent may want
to become a member of some group and have a specific role within it. It can
be done by firstly locating a specific group and then requesting a role with the
requestRole() method or alternatively, by creating a completely new group.
It can be done from the mentioned earlier activate method, called when the
agent is started:

public void activate() {
...
if (!isGroup("simple-exchange")) {

createGroup(true, "simple-exchange", null, null);
}
requestRole("simple-exchange", "first-agent", null);

}

Firstly, the condition is checked, whether the group interesting for us exists and, if
not, the agent creates it. Then, it tries to join this group with the role first-agent.

Communication

Mechanisms for the local messaging is provided directly in the base class of an agent
as few versions of the sendMessage() method. In the discussed case we want to
exchange messages between two agents. One can choose between two approaches:
explicitly locating a communication partner and obtaining its address or by using its
role name. The latter has an advantage of decoupling agents interactions from con-
crete agents instances — i.e. the partner can be easily replaced without introducing
any change in the other agent.

Message message = new SpecialMessage();
sendMessage("simple-exchange", "second-agent",

message);

Received messages are stored in a queue and can be obtained when needed by a
call to the nextMessage() method.

It is also possible to use a distributed communication. However, this feature is not
directly built into the system. MadKit follows an approach of the ‘agentification’ of



26 Ł. Faber, K. Piętak, A. Byrski, M. Kisiel-Dorohinicki

services. The user has to introduce an agent that will be able to handle routing and
forwarding of non-local messages. Such an agent needs to handle the communicator
role in the system group. When a message that is non-deliverable within a local
environment is sent, this agent will receive it and should forward it to another remote
communicator.

Coupling

Coupling between agents is low, as most of the interactions is performed using a
built-in messaging system that reduces a need to know each other agent interfaces.
Most of the services are also built as agents (due to aforementioned ‘agentification’)
and they are often identified by a specific role in the agent community and not by
an interface. Thus, it is possible to change parts of the system as easily as casual
agents.

MadKit GUI allows for simple changes to behaviour using a built-in code editor,
so it is possible to stop the simulation, modify the agent code and rerun it. Similarly,
agents can be added to or deleted from the simulation during runtime.

4.4 AgE

We have based this analysis on the version 2.5.0 (current stable) of the platform.

Life cycle of agents

As described on the page 10 the life cycle of an agent is well-defined. However,
in most cases only the step method must be provided by an agent creator. This
method is called once in every step of the computation.

AgE requires an agent to implement the IAgent interface. It also provides a
default implementation of it in the SimpleAgent class that leaves only the afore-
mentioned step() method unimplemented.

Organisation

Agents are organized in a tree structure. In this scenario three agents should be used:
a workplace (that is a root of a tree) and two leaf agents on the second level of the
tree. This structure is defined in the configuration file:

<agent name="workplace"
class="org.jage.workplace.IsolatedSimpleWorkplace">

...
<list name="agents">



Agent-based Simulation in AgE Framework 27

<agent name="agent1"
class="org.jage.example.SimpleAgent">

...
</agent>
<reference target="agent1" />

<agent name="agent2"
class="org.jage.example.SimpleAgent">

...
</agent>
<reference target="agent2" />

</list>
<property name="agents">

<reference target="agents" />
</property>

</agent>

We define the workplace (which is represented by the built-in
IsolatedSimpleWorkplace class) and, within it, a list of two agents of the
type SimpleAgent.

Communication

AgE provides a specialized mechanism for sending messages. However, if one wants
to send a message to a specific agent, he needs to obtain its address first (alterna-
tively, an agent can send a broadcast message). It is usually done by querying the
environment of the agent.

A sample query may look like this:

AgentEnvironmentQuery<SimpleAgent, IAgentAddress>
query = new AgentEnvironmentQuery<SimpleAgent,
IAgentAddress>(IAgentAddress.class);

query.select(agentAddress());
Collection<IAgentAddress> answer =

queryEnvironment(query);

The part responsible for obtaining addresses of agents is the agentAddress()
selector. The call to the queryEnvironment() method executes a query over
the calling agent’s environment (in which its partner is located).

Then, the agent can send a message:

Header<IAgentAddress> header = new
Header<IAgentAddress>(getAddress(), new
UnicastSelector<IAgentAddress>(receiverAddress));

Message<IAgentAddress, String> textMessage = new
Message<IAgentAddress, String>(header, "hello");

sendMessage(textMessage);
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At the moment AgE does not provide any means to distribute computation. How-
ever, work on this topic has already been started.

Coupling

In AgE, by applying separation of interfaces and providing communication and
queries mechanism, agents, their dependencies and platform elements are very low
coupled. Moreover, utilizing components techniques gives the wide opportunities
to easily create flexible and customizable simulation systems. Particulary, agents
structure, their behaviour or even simulation parameters can be easily changed by
providing modified runtime configuration. Such changes do not require any code
updates so that the platform components and libraries do not have to be recompiled.
One can also imagine that multiple similar simulations can be run in batch-mode
(one after another) without any user inference.

4.5 Summary

We have reviewed four different multi-agent frameworks and analysed facilities of-
fered by them that allows us to create a simple simulation. Each of mentioned sys-
tems has its strengths and weaknesses in particular aspects of its usage in solving
problems.

All of the systems have defined some kind of a life-cycle for agents. Some of
them enforce it in a rather strict way (AgE, MadKit) and some provide very flexible
mechanisms for scheduling an agent (RePast, MASON). Only RePast offers an easy
way to schedule many methods from a single POJO class.

The second considered aspect was a possibility to organise agents in different
ways. Both MASON and RePast have a good support for many (possibly co-existing
in one simulation) organisational schemes (graphs, spatial neighbourhood, etc.). On
the other hand MadKit requires following a strict Agent/Group/Role model but due
to its flexibility one could possibly implement other arbitrary models with little ef-
fort. AgE also provides only one possible organisational model — a tree structure
of agents.

The next aspect was communication and distribution. There is no defined com-
munication schemes in RePast and MASON. The user has to rely on plain method
calls or build their own mechanism. MadKit and AgE have chosen more strict ap-
proach and provide messaging facilities. Additionally, AgE has other means of com-
munication available: queries and object properties. From described platforms only
RePast provides an out-of-the-box way to distribute computation. In the rest of plat-
forms user is required to come up with their own approach to this problem.

The last aspect was coupling. RePast and MASON both introduce a lot of in-
terdependencies between agents (due to method calls as a messaging scheme) and
with a platform (e.g. no built-in dependency injection). MadKit follows the scheme
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of agentification of services and also has rather low coupling between agents. AgE
provides most advanced solutions regarding the decoupling and offers such facilities
as external configuration, DI or easy runtime modifications.

5 Conclusions

In the course of the contribution, a review of selected Java-based, agent-oriented
simulation frameworks was presented. The most important, in opinion of the au-
thors, features of these programming environments were evaluated, such as agents
life cycle management, inter-agent and agent-platform communication support,
agents society organisation, distributed environment facilities, as well as the over-
all status of their development. The evaluation was conducted for the most popular
general-purpose frameworks, such as MASON, RePast and MadKit, and proved
that they had many advantages, such as overall maturity, sophisticated GUI or sup-
port for different scripting languages. However it was found that they all lacked
either component-oriented features or built-in support for the low coupling of sim-
ulation structures. This leads to possibly inflexible designs, which makes it difficult
to change isolated parts of the simulation system without altering their contextual
dependencies.

Based on this scarce evaluation, the technical issues of AgE software environ-
ment were discussed. The platform seems to provide a well-suited execution en-
vironment for running agent-based simulations. It seems especially usefull when
taking into consideration one of the most important issues of software engineer-
ing: flexibility and extensibility, which is achieved by the component-based design.
Therefore it is very easy to extend the simulation prepared in AgE by changing its
parts, parameters, upgrading them to the next versions etc.

The work on AgE development continues, in the near future implementation of
user interface, monitoring facilities, experiment scheduling and persistence of re-
sults (among others) are planned to be completed.
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30 Ł. Faber, K. Piętak, A. Byrski, M. Kisiel-Dorohinicki

7. Byrski, A., Kisiel-Dorohinicki, M.: Agent-based model and computing environment facili-
tating the development of distributed computational intelligence systems. In: Proc. of ICCS
2009. Springer LNCS 5544, 5545 (2009)

8. Byrski, A., Schaefer, R.: Stochastic model of evolutionary and immunological multi-agent
systems: Mutually exclusive actions. Fundamenta Informaticae 95(2-3), 263–285 (2009)

9. Carneiro, G., Fontes, H., Ricardo, M.: Fast prototyping of network protocols through ns-3
simulation model reuse. Simulation Modelling Practice and Theory 19(9), 2063 – 2075 (2011)

10. Collier, N., North, M.: Repast SC++: A Platform for Large-scale Agent-based Modeling. Wi-
ley (2011)

11. Dahmann, J.: High level architecture for simulation. In: Proc. of First International Workshop
on Distributed Interactive Simulation and Real-Time Applications, pp. 9–14 (1997)

12. Davila, J., Uzcategui, M.: Galatea: A multi-agent simulation platform. modeling. In: Proc. of
Simulation and Neural Networks (MSNN-2000) Merida, Venezuela, pp. 216–233 (2000)

13. Ferber, J., Gutknecht, O.: A meta-model for the analysis and design of organizations in mul-
tiagents systems. In: Y. Demaseau (ed.) Proc. of ICMAS’98 Conference, Paris, pp. 128–135
(1998)

14. Fowler, M.: Inversion of control containers and the dependency injection pattern (2004). URL
"http://martinfowler.com/articles/injection.html"

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

16. Gutknecht, O., Ferber, J.: The madkit agent platform architecture. In: In Agents Workshop on
Infrastructure for Multi-Agent Systems, pp. 48–55 (2000)

17. Klein, J.: Breve: a 3d environment for the simulation of decentralized systems and articial
life. In: Proc. of Artificial Life VIII, the 8th International Conference on the Simulation and
Synthesis of Living Systems (2002)

18. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: A multi-agent sim-
ulation environment. Simulation: Transactions of the society for Modeling and Simulation
International 82(7), 517–527 (2005)

19. Nikolai, C., Madey, G.: Tools of the trade: A survey of various agent based modeling plat-
forms. Journal of Artificial Societies and Social Simulation 12(2) (2008)

20. North, M., Howe, T., Collier, N., Vos, J.: A declarative model assembly infrastructure for
verification and validation. In: S. Takahashi, D. Sallach, J. Rouchier (eds.) Advancing Social
Simulation: The First World Congress, Springer, Heidelberg, FRG (2007) (2007)

21. Pidd, M., Cassel, R.A.: Three phase simulation in java. In: In Proceedings of the 1998 Winter
Simulation Conference, pp. 367–371 (1998)

22. Railsback, S., Lytinen, L.: Agent-based simulation platforms: review and development recom-
mendations. Simulations 82, 609–623 (2006)

23. Schaefer, R., Byrski, A., Smołka, M.: Stochastic model of evolutionary and immunological
multi-agent systems: Parallel execution of local actions. Fundamenta Informaticae 95(2-3),
325–348 (2009)

24. Stroock, D.: An Introduction to Markov Processes. Springer (2005)
25. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA (2002)
26. Tesfatsion, L.: Agent-based computational economics: Modeling economies as complex adap-

tive systems. Information Sciences 149(4), 262–268 (2003)
27. Ventroux, N., Guerre, A., Sassolas, T., Moutaoukil, L., Blanc, G., Bechara, C., David, R.:

Sesam: An mpsoc simulation environment for dynamic application processing. In: CIT, pp.
1880–1886. IEEE Computer Society (2010)

28. Wainer, G., Mosterman, P.: Discrete-Event Modeling and Simulation: Theory and Applica-
tions (Computational Analysis, Synthesis, and Design of Dynamic Systems). CRC Press
(2010)

29. Wooldridge, M., Jennings, N.: Intelligent agents: Theory and practice. Knowledge Engineer-
ing Review 10(2) (1995)


