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Abstract. The paper deals with a specific class of multi-agent systems,
in principle similar to evolutionary algorithms, but utilising a more com-
plex, since decentralised, model of evolution. The proposed layered archi-
tecture uses the notion of a profile that models strategies and goals of an
agent with respect to some aspect of its operation. The paper presents
main ideas of the architecture illustrated by a concrete realisation that is
an evolutionary multi-agent system solving a generic optimisation prob-
lem.

1 Introduction

During the last years the idea of an intelligent/autonomous software agent gains
more and more applications in various domains. Agent technology provides con-
cepts and tools for development of complex, distributed and decentralised sys-
tems [6]. Apparently agents play also key role in integration of AI sub-disciplines,
which is often necessary to design and build modern intelligent systems.

Still the literature offers a variety of agent definitions, which range from
very simple to lengthy and demanding. In fact this should not be considered
a problem since “the notion of an agent is meant to be a tool for analysing
systems, not an absolute characterization that divides the world into agents
and non-agents” [8]. Indeed the term multi-agent system has a well-understood
meaning and a corresponding definition can be easily formulated: a multi-agent
system (MAS) is simply a collection of agents aiming at solving a given problem.
Since usually solving the problem stays beyond the individual capabilities or
knowledge of each single agent, the key concept here are intelligent interactions
(coordination, cooperation, negotiation). Thus multi-agent systems are ideally
suited to representing problems that have multiple problem solving methods,
multiple perspectives and/or multiple problem solving entities [6].

Of course a mutli-agent system may be implemented without any software
structures corresponding to agents at all. This often happens for simulation sys-
tems, where the introduction of agents facilitates modelling of complex phenom-
ena – natural, social, etc. In such cases agents constitute building blocks of the
simulation model, which may or may not be implemented with the use of agent
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technology. An evolutionary multi-agent system (EMAS) has analogous charac-
teristics, even though it is rather a computationally intelligent system that may
be considered as an extension to classical evolutionary algorithms. The key idea
of EMAS is the incorporation of evolutionary processes into a multi-agent sys-
tem (MAS) at a population level. It means that besides interaction mechanisms
typical for MAS (such as communication) agents are able to reproduce (generate
new agents) and may die (be eliminated from the system). A decisive factor of
an agent’s activity is its fitness, expressed by amount of possessed non-renewable
resource called life energy. Selection is realised in such a way that agents with
high energy are more likely to reproduce, while low energy increases possibility
of death.

Although evolutionary computation – a heuristic problem-solving approach
based on models of organic evolution – has been successfully used in solving
various problems for over 40 years, the model of evolution employed by most
evolutionary algorithms is much simplified and lacks many important features
observed in organic evolution. This includes dynamically changing environmen-
tal conditions, many criteria in consideration, neither global knowledge nor gen-
erational synchronisation assumed, co-evolution of species, evolving genotype-
fenotype mapping, etc. [1]. That is why many variations of classical evolution-
ary algorithms were proposed, introducing e.g. some population structure (in
parallel evolutionary algorithms) or specialised selection mechanisms (like fit-
ness sharing). The main advantage of EMAS is that it covers various specialised
techniques in one coherent model.

Yet EMAS is a very specific, due to its features and fields of application,
sub-type of multi-agent systems and thus needs special architecture that would
be more adequate and easier for design and implementation. Since existing for-
malisms for MAS may not be easily applied to this kind of agent systems a simple
yet extensible model of MAS based on M-Agent architecture is first proposed in
the paper (for further reference see e. g. [2]). This constitutes a base for a descrip-
tion of evolutionary phenomena at a level of a single agent and its internal
architecture. The described concepts are shortly illustrated by an application of
EMAS in the field of numerical optimisation.

2 General Model of MAS

The multi-agent system consists of a set of agents (ag ∈ Ag ) and some environ-
ment (env ) they live in:

MAS ≡ 〈Ag , env 〉 . (1)

The environment may have spatial structure and contain some information
and/or resources, which may be observed by the agents:

env ≡ 〈Res , Inf , sp〉 (2)

where Res and Inf represent global (available in the whole system) resources
and information, respectively. At the same time sp represents all features of
EMAS related to the existence of some space (if any) including:
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Fig. 1. General structure of a multi-agent system according to the proposed
model

– possible locations of agents and local information or resources (topology),
– actual agents’ positions,
– information or resources available in specific regions of the space,
– range of observation and/or activity of agents.

The space is most often represented as a graph (Fig. 1), and thus may be
described as:

sp ≡ 〈Pl ,Tr ,Loc〉 (3)

where: Pl – set of possible locations: pl ∈ Pl (nodes of the graph),
Tr – relation of direct neighbourhood between locations: Tr ⊂ Pl × Pl

(edges of the graph),
Loc – relation representing positions of agents: Loc : Ag → Pl .

Each location pl ∈ Pl may be described in terms of local (available in this
location) resources and information:

pl ≡ 〈Respl , Inf pl 〉 . (4)

The state of local resources Respl and information Inf pl may be observed and/or
changed only by agents, which remain close enough (this should be defined by
a particular application) to the location pl .

3 Profile-Based Architecture of an Agent

The functionality of each agent is defined by a set of actions (act ∈ Act ) it is able
to perform. Its internal architecture is described in terms of profiles (prf ∈ Prf ):

ag ≡ 〈Act ,Prf 〉 . (5)
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The action is an atomic (indivisible) activity, which may be executed by the
agent in the system.

Each profile defines the state of an agent from the point of view of a particular
aspect of its functionality. The profile may concern some resource possessed by
the agent (“physical” or “energetic” profiles):

prf res ≡ 〈res ,St ,Gl 〉 (6)

where: res – amount of the possessed resource,
St – set of strategies related to this resource,
Gl – set of goals related to this resource.

The profile may also be dedicated to modelling (a part of) the environment
and/or (some features of) other agents (“information” or “intellectual” profiles):

prf inf ≡ 〈mdl ,St ,Gl 〉 (7)

where: mdl – piece of information representing the agent’s knowledge about
the world it lives in (the model of the world),

St – set of strategies related to this model,
Gl – set of goals related to this model.

The model is constructed by an agent using the information acquired via obser-
vation of its neighbourhood or from other agents via communication. Of course,
this information may (in fact must) be incomplete and uncertain.

In both cases St denotes a set of strategies (st ∈ St ) describing how each
action is related to a particular profile. Thus strategy st , which describes action
act , in physical profile may be defined as:

st : res → res ′ (8a)

and in intelectual profile:

st : mdl → mdl ′ . (8b)

Strategies represent an agent’s expectations of the action results, the real effects
of the performed action may differ from these expectations, and this difference
may drive a learning process of an agent.

A set of goals (gl ∈ Gl ) specifies the agent’s needs with respect to the
resource or model and thus forms a base for a decision-making process. Active
goals indicate the desired direction of changes, and conservative goals define the
boundary conditions concerning the possessed resource or the state of the model
from the point of view of the particular profile.

In this framework a general scheme of MAS operation is that each agent
observes (some part of) the system, builds its internal model(s), and acts on
(maybe closer part of) the system according to goals defined, spending or gaining
some resources.
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Fig. 2. An example of agent’s decision making

In the particular case decision making means selection of the strategy to be
realised and then the action(s) to be performed. The internal architecture of an
agent does not enforce the specific rules of decision making. What is more, with-
out stronger assumptions, this problem is ambiguous because of many profiles,
and thus various goals to be achieved by an agent (at the same time). The most
important thing to be established seems the selection of an active goal, for which
such a strategy exists that actions to be performed do not violate passive goals
of remaining profiles.

The proposed model of decision making is related to the concept of a lay-
ered agent architecture [7] and assumes some order in the set of profiles
Prf ≡ (Prf ,≺), which allows for definite selection of the action to perform.
This order defines priorities of active goals, as well as the direction of search for
appropriate strategy and its verification by passive goals. Based on this assump-
tion the decision making process consists of three stages:

1. selection of the (next) active goal of the lowest priority,
2. search for a strategy which satisfies the selected goal,
3. verification of selected strategy by passive goals of remaining profiles.
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When any stage fails, the process returns to the previous stage looking for the
next element to consider. When stage 1 fails an agent remains idle (i. e. performs
no actions).

This procedure is illustrated by a simple example in Fig. 2: a) selection of
an active goal (stage 1), b) search for a strategy (stage 2), c) verification of an
action (stage 3), d) action verification failed (return to stage 2), e) repeated
search for a strategy (stage 2), f) action successfully verified (stage 3).

4 Modelling Phenomena of Evolution

Following neodarwinian paradigms, two main components of the process of evo-
lution are inheritance (with random changes of genetic information by means of
mutation and recombination) and selection. They are realised by the phenomena
of death and reproduction, which may be easily modelled as actions executed by
agents:

– action of death results in the elimination of an agent from the system,
– action of reproduction is simply the production of a new agent from its

parent(s).

Inheritance is to be accomplished by an appropriate definition of reproduc-
tion, which is similar to classical evolutionary algorithms. The set of parameters
describing core properties of an agent (genotype) is inherited from its parent(s) –
with the use of mutation and recombination. Besides, an agent may possess some
knowledge acquired during its life, which is not inherited. Both the inherited and
acquired information determines the behaviour of an agent in the system (phe-
notype).

Selection is the most important and most difficult element of the model of
evolution employed in EMAS. This is due to assumed lack of global knowledge
(which makes it impossible to evaluate all individuals at the same time) and
autonomy of agents (which causes that reproduction is achieved asynchronously).
In such a situation selection mechanisms known from classical evolutionary com-
putation cannot be used. The proposed principle of selection corresponds to its
natural prototype and is based on the existence of non-renewable resource called
life energy. The energy is gained and lost when agents execute actions in the
environment. Increase in energy is a reward for ‘good’ behaviour of an agent,
decrease – a penalty for ‘bad’ behaviour (which behaviour is considered ‘good’
or ‘bad’ depends on the particular problem to be solved). At the same time the
level of energy determines actions an agent is able to execute. In particular low
energy level should increase possibility of death and high energy level should
increase possibility of reproduction.

To provide a complete description of EMAS in terms of the proposed agent
architecture only a few details reflecting evolutionary nature of the system should
be completed. These are the mechanisms of selection and reproduction described
in energetic and reproductive profiles.

As it was already announced, selection in EMAS is based on specific mecha-
nisms, which are mostly driven by an energetic profile (prf eng ) consisting of:
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– resource eng – life energy,
– goal to keep the level of energy above minimal value engmin,
– strategies describing all agent’s actions in terms of energy gain and loss,

particularly the action of death:

stdie : eng → eng ind (9)

which is understood in this profile as a change of the state of life energy to
indefinite level eng ind > engmin,

and thus may be described as:

prf eng = 〈eng ,Steng = {stdie, . . .},Gleng = {eng > engmin}〉 . (10)

As long as the level of life energy is above engmin the goal of energetic profile is
conservative and blocks the realisation of actions which may decrease the amount
of eng below this limit. When the energetic state drops below engmin the goal
energetic profile becomes active and triggers the strategy of death.

The agent’s striving for reproduction is modelled by a reproductive profile
(prf rp), which consists of:

– resource hr , which determines the agent’s ability to reproduce,
– strategy describing the action of reproduction as reducing the level of hr to

its minimal value (hr min):

strp : hr → hr min (11)

and maybe other strategies related to resource hr ,
– goal to keep the level of hr below the maximal value hr max > hr min,

and thus may be described as:

prf rp = 〈hr ,Strp = {strp, . . .},Glrp = {hr < hr max}〉 . (12)

The amount of resource hr may increase (or decrease) depending on the situation
of the agent, i.e. its age, interactions with the environment and other agents, etc.
When it reaches the level of hr max the agent tries to reproduce, expecting that
it should lower the level of hr . The reproduction is successful if the state of
the agent (e. g. amount of life energy) and its neighbourhood allows for the
generation of a new agent.

Conforming to (5) an evolving agent is thus described as:

ag = 〈Act = {die , rp , . . .},Prf = (prf eng, prf rp, . . .)〉 . (13)

What lacks here is a profile (or profiles) reflecting the problem, which is to
be treated (solved) by EMAS, and actions reflecting the solving process. These
elements cannot be specified here because they are closely related to a particular
application domain. Such specific profile and actions dedicated for optimisation
problems are shortly described in the next section.
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5 EMAS for Numerical Optimisation

As an illustration to above considerations the simplest possible practical applica-
tion of the proposed architecture will be presented: an evolutionary multi-agent
system for numerical optimisation (cf. [4]).

In the particular EMAS the population of agents represents feasible solutions
to the problem defined by (a system of) objective function(s). The key issue here
is the design of energetic reward/punishment mechanism, which should prefer
better (with respect to the defined criterion or criteria) agents. This is done via
energy transfer principle forcing worse agents to give a fixed amount of their
energy to the encountered better agents. This may happen, when two agents
inhabiting one place communicate with each other and obtain information about
their quality with respect to known objective function(s).

According to (13) each agent in the system may be described as:

ag = 〈Act = {die , rp , ask , td , rd},Prf = (prf eng, prf rp, prf opt)〉 (14)

where ask , td , rd denote actions realising the energy transfer principle and
prf opt represents a dedicated optimisation profile.

An optimisation profile is a problem-dependent profile, which encapsulates
information about the solution represented by an agent, which is inherited during
reproduction. In fact this is the only component of an agent’s genotype and thus
the crucial element of the whole process. This profile also contains strategies
describing actions of energy transfer principle: ask (ask for information about
the quality of solution represented by another agent), td (transmit energy), and
rd (receive energy). Of course the last two actions must be also described in an
energetic profile.

The flow of energy connected with the transfer principle causes that better
agents are more likely to reproduce, whereas worse ones are more likely to die.
This way, in successive generations, the agents should represent better approxi-
mations of the solution to the problem.

6 Concluding Remarks

The proposed model of EMAS was successfully used as a base for a number for
applications. Application areas range from numerical optimisation to hybrid soft
computing systems involving fuzzy systems (e. g. data classification) and neu-
ral networks (e. g. time-series prediction). Concerning computational systems,
EMAS enables the following:

– local selection allows for intensive exploration of the search space, which is
similar to parallel evolutionary algorithms,

– the way phenotype (behaviour of the agent) is developed from genotype
(inherited information) depends on its interaction with the environment,

– self-adaptation of the population size is possible when appropriate selection
mechanisms are used.
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What is more, explicitly defined living space facilitates implementation in a dis-
tributed computational environment.

As the experimental results show the usefulness of the proposed model, the
future research should lead to refining of the architecture based on analysis of
the design and implementation process of EMAS applications in a variety of soft
computing problems.
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